蛋白质测定仪以及几种常用方法介绍
来源: http://www.grain17.com/ 类别:实用技术 更新时间:2021-01-19 阅读次
蛋白质是生命的物质基础,是生命活动的主要承担者,对人的身体健康有着直接的影响,因此,蛋白质含量检测是食品、饲料等诸多行业日常检测项目中必须检测的重要一项,为此,本文简单推荐蛋白质测定仪以及几种蛋白质测定方法。
1、蛋白质测定仪所应用的是经典的凯氏定氮法检测蛋白质含量,其原理将有机化合物与硫酸共热使其中的氮转化为硫酸铵,在这一步中,经常会向混合物中加入硫酸钾来提高中间产物的沸点。样本的分析过程的终点很好判断,因为,这时混合物会变得无色且透明。在得到的溶液中加入少量的氢氧化钠溶剂,然后蒸馏,这一步会将铵盐转化成氨,而总氨量会由反滴定法确定:冷凝管的末端会浸在硼酸溶液中。氨会和酸反应,而过量的酸则会在甲基橙的指示下用碳酸钠。滴定所得的结果乘以蛋白质系数就可得到蛋白质含量了。
2、紫外分光光度法
蛋白质分子中存在含有共轭双键的酪氨酸和色氨酸,使蛋白质对280nm的光波具有最大吸收值,在一定的范围内,蛋白质溶液的吸光值与其浓度成正比,可作定量测定。该法操作简单、快捷,并且测定的样品可以回收,低浓度盐类不干扰测定结果,故在蛋白质和酶的生化制备中广泛被采用。但此方法存在以下缺点:
1.当待测的蛋白质中酪氨酸和色氨酸残基含量差别较大会产生一定的误差,故该法适用于测定与标准蛋白质氨基酸组成相似的样品。
2.若样品中含有其他在280nm吸收的物质如核酸等化合物,就会出现较大的干扰。但核酸的吸收高峰在260nm,因此分别测定280nm和260nm两处的光吸收值,通过计算可以适当的消除核酸对于测定蛋白质浓度的干扰作用。但因为不同的蛋白质和核酸的紫外吸收是不同的,虽经校正,测定结果还存在着一定的误差。
3、Bradford法
1976年Bradford建立了用考马斯亮蓝G-250与蛋白质结合的原理,是一种能够迅速并且准确的定量蛋白质的方法。染料与蛋白质结合后引起染料最大吸收光的改变,从465nm变为595nm。蛋白质-染料复合物具有高的消光系数,因此大大提高了蛋白质测定的灵敏度(最低检出量为1μg)。染料与蛋白质的结合是很迅速的过程,大约只需2min,结合物的颜色在1h内是稳定的。一些阳离子(如K+,Na+,Mg2+、)、(NH4)2SO4、乙醇等物质不干扰测定,而大量的去污剂如TritonX-100,SDS等严重干扰测定,少量的去污剂可通过用适当的对照而消除。由于染色法简单迅速,干扰物质少,灵敏度高,现已广泛用于蛋白质含量的测定。
4、双缩脲法
具有两个或两个以上肽键的化合物皆有双缩脲反应,蛋白质在碱性溶液中能与Cu2+络合呈紫红色,颜色深浅与蛋白质浓度成正比,故可用比色法进行测定,根据标准曲线进行计算可以确定蛋白质浓度。
5、Folin-酚试剂法
测定蛋白质含量的经典方法,它是在双缩脲法的基础上发展而来的。它操作简单、迅速、灵敏度高,较双缩脲法灵敏100倍。Folin-酚法所用的试剂由两部分组成,试剂A相当于双缩脲试剂。蛋白质中的肽键与试剂A中的碱性硫酸铜反应形成铜-蛋白质复合物。这个复合物可与试剂B中磷钼酸-磷钨酸发生氧化还原反应。由于磷钼酸与磷钨酸易被酚类化合物还原而呈蓝色反应。而蛋白质中的酪氨酸和色氨酸均可发生此呈色反应。颜色的深浅与蛋白质的浓度成正比。故可用比色法测定蛋白质的含量。
此法易受蛋白质样品中酚类化合物及柠檬酸的干扰。另外,试剂B中的磷钼酸-磷钨酸仅在酸性pH值时稳定,故在将试剂B加入到碱性的铜-蛋白质溶液时,必须立即混合均匀。以确保还原反应能正常发生。此法也适用与酪氨酸和色氨酸的定量测定。
1、蛋白质测定仪所应用的是经典的凯氏定氮法检测蛋白质含量,其原理将有机化合物与硫酸共热使其中的氮转化为硫酸铵,在这一步中,经常会向混合物中加入硫酸钾来提高中间产物的沸点。样本的分析过程的终点很好判断,因为,这时混合物会变得无色且透明。在得到的溶液中加入少量的氢氧化钠溶剂,然后蒸馏,这一步会将铵盐转化成氨,而总氨量会由反滴定法确定:冷凝管的末端会浸在硼酸溶液中。氨会和酸反应,而过量的酸则会在甲基橙的指示下用碳酸钠。滴定所得的结果乘以蛋白质系数就可得到蛋白质含量了。
2、紫外分光光度法
蛋白质分子中存在含有共轭双键的酪氨酸和色氨酸,使蛋白质对280nm的光波具有最大吸收值,在一定的范围内,蛋白质溶液的吸光值与其浓度成正比,可作定量测定。该法操作简单、快捷,并且测定的样品可以回收,低浓度盐类不干扰测定结果,故在蛋白质和酶的生化制备中广泛被采用。但此方法存在以下缺点:
1.当待测的蛋白质中酪氨酸和色氨酸残基含量差别较大会产生一定的误差,故该法适用于测定与标准蛋白质氨基酸组成相似的样品。
2.若样品中含有其他在280nm吸收的物质如核酸等化合物,就会出现较大的干扰。但核酸的吸收高峰在260nm,因此分别测定280nm和260nm两处的光吸收值,通过计算可以适当的消除核酸对于测定蛋白质浓度的干扰作用。但因为不同的蛋白质和核酸的紫外吸收是不同的,虽经校正,测定结果还存在着一定的误差。
3、Bradford法
1976年Bradford建立了用考马斯亮蓝G-250与蛋白质结合的原理,是一种能够迅速并且准确的定量蛋白质的方法。染料与蛋白质结合后引起染料最大吸收光的改变,从465nm变为595nm。蛋白质-染料复合物具有高的消光系数,因此大大提高了蛋白质测定的灵敏度(最低检出量为1μg)。染料与蛋白质的结合是很迅速的过程,大约只需2min,结合物的颜色在1h内是稳定的。一些阳离子(如K+,Na+,Mg2+、)、(NH4)2SO4、乙醇等物质不干扰测定,而大量的去污剂如TritonX-100,SDS等严重干扰测定,少量的去污剂可通过用适当的对照而消除。由于染色法简单迅速,干扰物质少,灵敏度高,现已广泛用于蛋白质含量的测定。
4、双缩脲法
具有两个或两个以上肽键的化合物皆有双缩脲反应,蛋白质在碱性溶液中能与Cu2+络合呈紫红色,颜色深浅与蛋白质浓度成正比,故可用比色法进行测定,根据标准曲线进行计算可以确定蛋白质浓度。
5、Folin-酚试剂法
测定蛋白质含量的经典方法,它是在双缩脲法的基础上发展而来的。它操作简单、迅速、灵敏度高,较双缩脲法灵敏100倍。Folin-酚法所用的试剂由两部分组成,试剂A相当于双缩脲试剂。蛋白质中的肽键与试剂A中的碱性硫酸铜反应形成铜-蛋白质复合物。这个复合物可与试剂B中磷钼酸-磷钨酸发生氧化还原反应。由于磷钼酸与磷钨酸易被酚类化合物还原而呈蓝色反应。而蛋白质中的酪氨酸和色氨酸均可发生此呈色反应。颜色的深浅与蛋白质的浓度成正比。故可用比色法测定蛋白质的含量。
此法易受蛋白质样品中酚类化合物及柠檬酸的干扰。另外,试剂B中的磷钼酸-磷钨酸仅在酸性pH值时稳定,故在将试剂B加入到碱性的铜-蛋白质溶液时,必须立即混合均匀。以确保还原反应能正常发生。此法也适用与酪氨酸和色氨酸的定量测定。